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We report numerical results on the repton model of Rubinstein [Phys. Rev. Lett. 59, 1946 (1987)] as
adapted by Duke [Phys. Rev. Lett. 62, 2877 (1989)] as a model for the gel electrophoresis of DNA. We
describe an efficient algorithm with which we have simulated chains of N reptons with N several hundred
in some instances. The diffusion coefficient D in the absence of an external electric field is obtained for
N <100; we find N?D=1(1+5N ~*7*) for large N. The coefficient 1 is in accord with the analytical re-
sults of Rubinstein and of van Leeuwen and Kooiman [Physica A 184, 79 (1992)]. The drift velocity v in
a static field of variable strength E is obtained for various N and NE up to N =30 when NE is as small as
0.01 and up to N =400 when NE is as large as 20. We find that v has a finite, nonzero limit as N — oo at
fixed E and that this limit is proportional to | E|E, in accord with the conclusions of Duke, Semenov, and
Viovy [Phys. Rev. Lett. 69, 3260 (1992)] for a different but related model. In a scaling limit in which
N—>owo and E—O0 the drift velocity in the repton model is fitted well by the formula
N*=NE[({)*+(2NE /5)*)'”? for all values of the scaling variable NE. We present a scaling analysis
complementary to that of Duke, Semenov, and Viovy with which we rationalize the | E | E behavior of the
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limiting drift velocity.
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I. INTRODUCTION

Rubinstein proposed a lattice model of the dynamics of
entangled polymers that he termed the repton model
[1,2], which Duke has adapted as a model for the gel elec-
trophoresis of DNA [3-5]. It has been studied both
analytically [1,2,6-11] and by Monte Carlo simulation
[3-6].

The dynamics in the model is purely that of reptation;
i.e., the polymer chain moves only along its own contour
by the diffusion of stored length [12]. The model is most
simply studied in its projected form in which it becomes
that of a connected chain of N elements (reptons) that
move by discrete steps on parallel tracks, each repton
moving forward or backward on its track subject to cer-
tain dynamical rules [1,2]. If x; (an integer-valued coor-
dinate) is the location of the ith repton on its track, the
chain connectivity requires that |x; —x;_,| be only 1 or 0
for all i =2,3,...,N. This condition of connectivity and
the condition of reptation on the original three-
dimensional lattice, before projection, are preserved by
the move rules in the projected version: an end repton
(i=1 or N) may move only forward (by one step) if its
neighbor (i =2 or N —1) is one step ahead of it; only
backward if its neighbor is one step behind it; and either
forward or backward if its neighbor’s x is the same as its
own; while an interior repton (2<i <N —1) may move
only forward (by one step) if one of its neighbors is one
step ahead of it and its other neighbor is at the same x as
itself; only backward if one of its neighbors is one step
behind it and its other neighbor is at the same x as itself;
and otherwise may not move. These rules are exemplified
in Fig. 1 for a chain of fifteen reptons (after Duke [3]).

1063-651X/94/49(6)/5303(7)/$06.00 49

An arrow attached to a repton indicates an allowed
move.

If there is an applied (static) electric field E, the rep-
tons’ tracks, and so the axis of the coordinates x, are
chosen parallel to it, with x increasing in the direction of
E as in Fig. 1. With every allowed move 1 or | of a rep-
ton there is associated a transition probability per unit
time, B or B ~!, respectively, with

B=ef/2 (1)

thus favoring moves in the forward direction (that of in-
creasing x) with the ratio ef of forward to backward
transition rates. (Here B and E are dimensionless; else-
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repton number i

FIG. 1. Repton chain with N =15 in the projected represen-
tation in which there is a single discrete spatial coordinate x in
the direction of an externally applied electric field E (after Duke
[3]D. The arrows attached to reptons represent allowed moves.
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where [6] the transition rates are taken to be wB and
wB ~! and the present E is called eEa /kT, where w and a
are elementary rate and length parameters in the model, e
the charge per repton, k Boltzmann’s constant, and T the
temperature.)

Formally exact but implicit formulas for the diffusion
coefficient D at E =0 and for the drift velocity v are
known [6]. (The present D and v are dimensionless and
are what are elsewhere [6] called D /a*w and v/aw.) D
may be obtained by inversion of a sparse 3V ! X3V !
matrix; it is known analytically [6] for 1 <N <5 and nu-
merically [13], but exactly, for 6 <N =< 12. Similarly, v is
known analytically [6] for 1 <N <3 for any E, and nu-
merically but exactly for N =4 [6] and for N =5,6,7 [14],
again for any E. For any fixed N these D, v, and E are re-
lated by the Nernst-Einstein relation

ND = lim = (fixed N) , Q)
E—-0FE

as required by general principles and as explicitly shown
by van Leeuwen [7] for the present model.

It is characteristic of reptation in general [12], and of
the repton model in particular, that D becomes propor-
tional to 1/N? in the asymptotic limit N— cc. From
Rubinstein’s analysis [1,2] as applied to the model with
the present move rules, one expects the coefficient of the
1/N? term in D to be . (as quoted in [6]). Van Leeuwen
and Kooiman [8-11] have made an important advance in
the analysis of the model. Applying what they call
periodic boundary conditions, and from a plausibility ar-
gument that the consequent alteration of the move rules
for the end reptons should not affect the leading asymp-
totic behavior of D as N-oo, they, too, find the
coefficient of the 1 /N? term in D to be 1.

It was conjectured [6] that in a scaling regime defined
by N— o and E—O0 for any value of a scaling variable
u=V'NE the drift velocity v would take the form
v =N ~3/2J(u) with J (u) an odd function of u that is pro-
portional to u for small u and to u® for large u. The
small-u behavior of J(u) would then give the required
D ~const/N?, from (2); while its large-u behavior would
imply that at fixed E the drift velocity approaches a
finite, nonzero limit as N — oo, and that this limit is pro-
portional to E3 for small E. That v has a finite, nonzero
limit as N— o at fixed E is a known phenomenon in
electrophoresis—it is the loss of molecular-weight
discrimination at high molecular weights—and, in par-
ticular, is a known property of the repton model [3]. This
property, and the proportionality of the limiting
(N — oo ) drift velocity to E3, are seemingly found also in
other, related models of electrophoresis, by analytical and
physical arguments (Refs. [15] and [16] and results quot-
ed in Refs. [4] and [17]) and by simulation [18]. The
analysis of Kooiman and van Leeuwen [9] is also in ap-
parent agreement with the earlier conjecture [6] that for
large N and small E the drift velocity is of the form
N 73/2J(u) with J (u) an odd function of the scaling vari-
ableu =V NE.

Recently, however, analyzing the different but related
“biased reptation” model, but taking account of fluctua-
tions not considered in earlier treatments [15,16], Duke,
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Semenov, and Viovy [19,20] have concluded that the drift
velocity in the N — o limit would be proportional not to
E* but to E? (or, more properly, to the nonanalytic |E|E,
since v must be odd in E). This is also in better agree-
ment with experiment [15,21].

We have performed Monte Carlo simulations of the
repton model, which we describe in the next section,
where we also present our results. We confirm that D is
proportional to 1/N? for large N, with the coefficient 1of
Rubinstein [1,2] and of van Leeuwen and Kooiman
[7-11]. We find the correction to be of order 1/N8/3.
For any N > ~20 (we determined D for N up to 100) the
data are fit well by

_ 1
3N?

5

D N2/3

(3)

We find, further, that there is indeed a scaling regime
defined by the asymptotic limits N — o« and E —O0; but
that, contrary to the earlier conjecture [6], the scaling
variable u is NE rather than V NE,

u =NE , (4)
and the scaling relation is of the form
v=N"J(u), (5)
with
constXu , u—0
Jlu)~ const X |ulu , |ul—e . ©)
J(u) is thus asymptotically proportional to u? (rather

than to u°>, as conjectured earlier) as |u|— . With (2),
this again implies that D is proportional to 1/N? for
large N, as expected, and it again implies that v ap-
proaches a finite, nonzero limit as N — o, but it asserts
that this limiting v is proportional to |E|E rather than to
E3, in agreement with the conclusions of Duke, Semenov,
and Viovy [19,20]. Specifically, we find the data to be fit
well by

J)=ul (12 +(2u)?]V 2, ™

which has the properties (6) in the limits of small and
large u.

In the concluding Sec. III we summarize our results,
and we present a scaling argument, complementary to
that of Duke, Semenov, and Viovy [19,20], with which we
are able to understand why the appropriate scaling vari-
able is u =NE [Eq. (4)], why the drift velocity scales as
N ~? multiplied by a scaling function J (x) [Eq. (5)], and
why J(u) is proportional to u? when u is large [Eq. (6)].
We discuss the connection to the earlier version of the
biased reptation model [15,16], before it was extended by
Duke, Semenov, and Viovy [19,20]. We conclude with a
discussion of some still open questions.

II. NUMERICAL SIMULATION
OF THE REPTON MODEL

Numerical simulations of the repton model have been
previously carried out [3-6], but statistical errors have
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prevented a definitive study of its scaling properties. In
Sec. IT A, we discuss a multispin coding scheme for the
repton model that, when implemented on a powerful SP-1
parallel computer, has allowed us to obtain many new re-
sults.

In Sec. II B we discuss our results for the diffusion of a
polymer in the repton model with no electric field. We
find the usual 1/N? diffusion constant behavior, but in
addition we are able to determine the numerical prefactor
and corrections to leading scaling for large N. In Sec.
IIC we consider small electric fields (EN <1, E <<1),
and we are able to verify the Nernst-Einstein result. Sec-
tion IID presents the drift velocity in a stronger field
(EN > 1, but still E <<1). Finally in Sec. II E we demon-
strate that, for large N, our weak- and strong-field results
can be described by a scaling function dependent only on
EN.

A. Multispin coding for the repton model

For computational efficiency, we have used ‘“multispin
coding:” the computationally intensive part of the code is
written in bit operations, which allows one to run 32 in-
dependent simulations in parallel by applying AND and
OR operations to four-byte integers of which each bit cor-
responds to an independent simulation. The reptons in a
chain have one-dimensional coordinates (x,...,xy).
The demand that the chain is not “broken” requires that,
given x;, only three options are left for x; |,

Xip1=x;ts; (8)

in which s; equals —1, 0, or 1. In our simulation we keep
track of x, and s;,...,sy_;. Thestatess=—1,0, and 1
are bitwise represented as (s',s")=(1,0), (1,1), and (0,1),
respectively. In each step of the algorithm, a repton i and
a direction up is selected. If up equals 1, the proposed
move is upward; otherwise it is downward. If the select-
ed repton is not an end point of the chain, the new value
for x; is determined by s;_, s;, and up, which in its turn
determines the new values for s; _; and s;. By examining
all the possible moves, we deduce that

| =(s}_, AsHV(—upAsl_))

V(—upAs!AsHV(=si_,), 9)
si_1=(s{_; As[)V(upAs/_,)
V@upAs!AsDV(=si_)), (10)
si=(s]_, As})V(upAs))
V(upAs/_y As{_ )V (—s]), (11)
si=(s{_{ As))V(—upAs/])
V(—upAs/_ As;_ )V (=s)) . (12)
For the left end point we derive in a similar way:
si=(up)V(=s}), (13)
si=(—up)V(—s}), (14)

and for the right end point,

Sy—1=(—up)V(=sf_y), (15)
sh_1=(p)V(=sk_,). (16)

One step in the program consists of randomly selecting a
repton i, generating a four-byte random number up, and
applying the appropriate operations outlined above. If
i =1, x, also has to be updated.

In a simulation, we frequently calculate the center of
mass of the chain,

1 N
Xem = § (17)

Initialization of the chain is done by selecting s; random-
ly from {—1,0,1}. As each of these values is equally
likely to occur in the absence of an electric field, no
thermalization is required if E =0.

Upward and downward moves are no longer equally
likely if an external electric field is present. In our com-
puter program, with a probability 1—1/f we assign a
random number to up, and with a probability 1/f we as-
sign the logical OR of two random numbers to up. Be-
cause of this, our upward transition probability equals
T,,=(w'/2N)1+f/2), and our downward transition
probability T4, =(@'/2N)(1—f/2). This method
yields transition rates that are equal to the transition
rates as defined in Sec. I, if we choose a dimensionless

=(B+B "“)Wand f=2(B—B~))/(B+B~ ).

B. Results for diffusion constant with zero electric field

The diffusion constant was measured by measuring
how far the centers of mass of chains moved in a given
time, in the absence of any electric field. The square of
the center-of-mass distance moved, divided by the
elapsed time, gives the diffusion constant. Since all al-
lowed configurations occur with equal probability,
thermalization is not necessary if a random initial condi-
tion is chosen.

We performed simulations with ¥ =20, 30, 50, 60, 70,
and 100. For each value of N we performed 256 simula-
tions (8 SP-1 processors, 32 simulations per processor),
each consisting of 5X 10® steps. During each simulation
we kept track of the center of mass, and we calculated the
diffusion constant D, given by

256
D=3 x.n()?/At, (18)
i=1
in which At is given by 5X 108 /(2N).

We anticipate that the behavior of D for large N is
given by D ~N "% (Sec. I). In Fig. 2, DN? is plotted as a
function of N 2/3, and a straight line fit through the
points obtained by the simulations results in
limy_, ,(DN?)=0.34(1), which is in agreement with the
coefficient . If we assume that the asymptotic value is
indeed 1, we find D =1N"2+bN "33, with b =1.66(3);
in this paper, we take b =3. The circles in Fig. 2 indicate
the exactly known values for D, obtained from [6] and
[13].
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FIG. 2. Finite-size scaling of the diffusion constant. The
scaled diffusion constant DN? is plotted as a function of N 273,
Circles indicate analytic results from Widom et al.; points with
error bars indicate numerical results. The straight line is given
by N’D=1(1+5N"*").

C. Results for drift velocity in weak fields

In small nonzero fields, the center of mass of the poly-
mer will drift a distance proportional to the elapsed time
of the simulation; the ratio of these two quantities gives
the drift velocity. We have chosen random
configurations (i.e., E =0 equilibrium configurations) as
initial conditions, and we have simply run for sufficient
time for the chain to move a distance of many times N /2.
We have checked that our results are not biased by the
short equilibration period at the start of our runs by veri-
fying that within our statistical errors, the first and
second half of the runs lead to the same drift velocity.

During our study, we observed that for fixed NE, vN 2
approached a constant for large N. Thus we are present-
ing data for N varied with EN fixed. We performed simu-
lations for N =5, 10, 20, and 50, each for NE =0.01,
0.05, 0.1, 0.2, 0.33, and 0.5.

We measured the drift velocity v, and we have plotted
veN? as a function of N in Fig. 3. The factor
¢ =(IN"2)/(AN72+ 35N 737 is the correction for finite
N that arises from the finite-size scaling of the diffusion
constant as discussed in the previous section. Note that
if N— o, ¢—1; however, without the correction c, a
believable extrapolation to N — o is not possible with
the range of N studied here.

Figure 3 shows that for fixed NE, vN? approaches a
constant value as N— . This indicates that vN? is a
function only of NE for large N. The extrapolated value
of uN? as a function of NE is plotted in the left half of
Fig. 5 (squares), in which one can see that vN2~EN for
N— o and NE <<1, which is precisely the Nernst-
Einstein behavior discussed in Sec. I.

D. Results for drift velocity in strong fields

For EN larger than order unity, we carried out the
same sort of measurements of drift velocity described in
Sec. II C. We performed simulations for N =30, 40, 50,
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FIG. 3. Rescaled drift velocity cvN? as a function of polymer
length N, for fixed values of NE. Asymptotic values for cvN? in
the limit N — oo are indicated by dotted lines. From top to bot-
tom, curves correspond to NE =0.5, 0.33, 0.2, 0.1, 0.05, and
0.01. Error bars are omitted if they are much smaller than the
symbol size.

60, 70, 80, 100, 200, 300, and 400, each for fixed NE =1,
2, 3, 4,5, 10, and 20. The resulting drift velocities are
shown in Fig. 4, in which we plot vN? as a function of N
for fixed NE. For large NE we have found that we can
extrapolate vN2 to N — o to extract the large-N limiting
behavior.

From Fig. 4 we conclude that vN? is a function of NE
alone for large N. The extrapolated values for vN? are
shown as a function of NE in the right half of Fig. 5 (cir-
cles) where we see that uN2=(NE)?, or v =~E? for N— «
and NE >>1.

E. One-parameter scaling of drift velocity

Figure 5 shows the extrapolation of vN? to infinite N at
fixed NE obtained from the numerical results described in
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FIG. 4. Rescaled drift velocity vN? as a function of polymer
length N, for fixed values of NE. Asymptotic values for uN? in
the limit N — oo are indicated by dotted lines. From top to bot-
tom, curves correspond to NE =20, 10, §, 4, 3, 2, and 1. Error
bars are omitted if they are much smaller than the symbol size.
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FIG. 5. Rescaled drift velocity vN? as a function of the re-
scaled electric field NE, in the limit N— «. Squares are ob-
tained from Fig. 4; circles from Fig. 5. The straight line is given
by N2v=NE[(})*+(2NE /5)*]'/%

Secs. IIC and IID above. We have found that
vN2=J(NE), where J(u) is a universal function describ-
ing the crossover from the small-NE, v =<E /N behavior
to the v~E? large-NE regime. For u <<1, J(u)xu,
while for u >>1, we find that J(u) < u?. Empirically, we
find that the function J(u)=u[(1)*+(2u/5)?]'/? runs
through our data points, and is an accurate approxima-
tion to our extrapolated results.

III. DISCUSSION

We have carried out a study of the scaling properties of
the Duke-Rubinstein model for an electrically charged
polymer being driven through a fixed network by a con-
stant electric field. At zero field, we obtain the original
repton model of Rubinstein, and we find that the polymer
diffuses with a diffusion constant of 1/(3N2). The N
dependence of the diffusion constant is as expected from
reptation theory and as observed in previous simulations,
and the numerical factor of 1 matches the results of argu-
ments of Rubinstein [1,2] and Kooiman and van Leeuwen
and Kooiman [8-11]. However, in addition we have
found that there are appreciable subleading power-law
corrections to the diffusion constant which were not re-
ported before.

Our numerical results for nonzero electric fields indi-
cate that for large numbers of reptons N (proportional to
molecular weight), but for small electric fields (E <<1),
there is a simple one-parameter scaling behavior of the
drift velocity of a chain in the repton model. The scaling
variable describing the characteristic field strength was
shown to be EN, and for low field strengths, the drift ve-
locity is proportional to E/N as given by the Nernst-
Einstein relation.

The E? dependence at larger fields (EN>1, but
E <<1) has only recently been proposed by Duke,
Semenov, and Viovy [19,20] for the case where the poly-
mer is flexible at the network scale. The repton model
should be in this class since many monomers may be
stored at any one network node. Our numerical results
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strongly support this, showing a robust E? dependence of
the drift velocity for EN > 1.

Previous to the work of Duke, Semenov, and Viovy
[19], the prevailing belief was that the velocity should
behave as E> for EN'/2> 1, based on the original model
of biased reptation studied by Lumpkin, Déjardin, and
Zimm [15] and Slater and Noolandi [16]. Biased repta-
tion turns out to be appropriate only when the polymer is
inflexible at the network scale [19], which is not the case
for the repton model as studied in this paper. However,
there certainly may be experimental cases where the E3
behavior may be observed, due to the polymer persistence
length being comparable with the pore size. In what fol-
lows, we quickly summarize the scaling behavior of the
repton model using some simple physical arguments, and
then we briefly explain the relationship between the rep-
ton model as studied here, and the early version of the
biased reptation model. Finally, we will mention some
open questions that remain.

A. Drift velocity: small and large NE

We now present a physical argument for the E 2
behavior that we have observed in the repton model,
based on ideas from the equilibrium statistical mechanics
of stretched polymers. In this section we consider the
three-dimensional chain conformations that correspond
to the projected form of the repton model discussed
above. Our argument arrives at the same results for the
drift velocity as Duke, Semenov, and Viovy [19,20], but is
somewhat simpler.

For small E, the Nernst-Einstein relation tells us that
the drift velocity should be proportional to EN (the total
force on the chain) times the E =0 diffusion constant.
Since a reptating chain moves a distance R=N'!/? in a
time 7~N? (the time required for diffusion of the chain
out of its “tube” [12]), the diffusion constant of a reptat-
ing polymer is D ~R?/7~1/N? [12], ignoring numerical
prefactors. Thus for small enough E, we expect a drift ve-
locity v = END =E /N.

The Nernst-Einstein estimate is invalid if the electric
field significantly distorts the conformations of the drift-
ing coil. The value of E at which this occurs can be
determined by comparing stretching of the chain to its
natural random-walk fluctuations. Consider the three-
dimensional conformation of a chain of N reptons, num-
bered with an index v. A weak external field which does
not perturb the random-walk statistics appreciably will
randomly point in the +v and —v directions, and thus
the net force along the tube occupied by the chain will
randomly push the polymer out of the v=1 and v=N
ends of its tube, and will have an amplitude which scales
as N'72E. The stretching h of the chain along the tube
(which can relax rapidly compared to the other, topologi-
cally constrained degrees of freedom of the chain) will be
determined by the balance of this force against the entro-
pic elasticity of the Edwards model [22], h /N ~EN!/2
Spontaneous fluctuations of the stretching along the tube
for E=0 are of order R =N!72, and thus if NE <<1 we
can expect the Nernst-Einstein result to be valid. For
NE > 1, the stretching along the tube exceeds the equilib-
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rium fluctuations and the field must be considered
“strong.”

We can now estimate the drift velocity for NE > 1, but
still E <<1. There is a characteristic chain length
N,=1/E which defines the scale below which the poly-
mer statistics cease to be perturbed away from the equi-
librium (random-walk) ensemble. A portion of the chain
of size N, is therefore a roughly isotropic ‘“blob” of size
E~N)?~E~'2 The entire chain is made up of
n~=N /N, ~NE such blobs arranged roughly end to end:
beyond the blob scale, the polymer is fully stretched.
Thus, we expect a cigarlike conformation of length
I~nfé~NE'/? and diameter £~E ~!/2.

We note that a roughly analogous “blob” scale is essen-
tial to problems where polymers have stretched equilibria
(e.g., grafted polymers [23], polymers under traction [24],
polyelectrolytes in low-salt solution [25], etc.) and is a
consequence of the n'!/? behavior of the Edwards model
for a random walk, which always beats out an extension
linear in n, as n —0.

The drift velocity follows by noting that the Nernst-
Einstein argument can be applied to each blob. Each blob
is acted on by a body force N, E, and has a mobility given
by the blob diffusion coefficient D, ~1/N?. At super-
blob scales, the polymer smoothly drifts at a velocity
v~N,ED,, or v=E? The dependence on molecular
weight has disappeared due to the fact that the polymer
is completely stretched at scales beyond N,: thermal
fluctuations are insufficient to alter the steady motion of
the chain along the external field at super-blob scales.

B. One-parameter scaling of drift velocity

The identification of NE as a variable that character-
izes the field strength, and its correspondence to the num-
ber of blobs for NE > 1, is consistent with our numerical
result that the drift velocity can be written in terms of a
universal function of NE. Our numerical results (see Fig.
5) indicate that for N >>1 and E <<, the drift velocity v
can be written in terms of a universal function J(NE) as
v =N “2J(NE), where we have the behaviors J (u)=u as
u—0,and J(u)=~u’asu— .

The existence of one-parameter scaling follows from
the assumption that 1/N is the only scale for E; this in
turn follows from the universality of the Edwards model
for long polymers. Thus we expect that such scaling
should hold for any polymer in a network provided that
it is sufficiently flexible, and that the network is
sufficiently coarse for the chain to be described by an Ed-
wards model at the pore scale. The repton model satisfies
this requirement, and by the use of numerical simula-
tions, we have been able to show that one-parameter scal-
ing holds for the drift velocity.

Figure 5 shows the scaling function J (u) calculated nu-
merically for the repton model for N — oo; it smoothly
interpolates between the linear small-u region (where the
fluctuation-dissipation theorem holds) to the quadratic u 2
region, where the polymer is pulled out into an extended
object. In other models, or in experiments, additional
length scales due to rigidity, or due to strong orientation-
al interactions between the pores and the polymer, may

set additional scales for E. For the repton model in an
electric field, the statement that one-parameter scaling of
v holds at large N for any E <<1 is the major result of
this paper.

C. Biased reptation model

It is worth commenting how one arrives at the E°*
behavior associated with the original version of the
biased reptation model [15,16]. In this model, it is as-
sumed that each segment along the polymer has an orien-
tation with projection along the field axis that scales as E.
Thus, the extension of the chain is assumed to be of order
h=EN. This extension exceeds the spontaneous
random-walk conformation fluctuations when h > N'/2,
or for EN'/2>1. This criterion replaces the stretching
argument made above when the chain is inflexible at the
network scale [19,20], circumstances under which the
elasticity ideas of the Edwards model are obviously
inapplicable. For EN!/2<1 we may continue to apply
the usual reptation and Nernst-Einstein arguments to
find a drift velocity v =E /N. As before, we suppose that
E <<1 and that N — .

For biased reptation, we may use a blob argument to
estimate the drift velocity for EN'/2> 1. The blob molec-
ular weight is N, = 1/E?; below this scale there is no ap-
preciable stretching. Along a chain we thus have
n =N /N,=NE? blobs. The blob size is £=N,’>=1/E,
and thus the total extension of the chain is / =n§=EN,
while its diameter is §. Note that this total extension is
consistent with the total extension assumed in the biased
reptation model. We then estimate a drift velocity of
v=N,ED,, and using the blob diffusion constant
D, =1/N}?, we have v =E°.

D. Further questions

Several questions have been raised by the results
presented in this paper. First, we have found that there
are strong subleading power-law corrections to the
diffusion constant for finite N: D =1N “2(1+5N 2.
The same corrections are observed in the drift velocity
for weak fields (EN < 1), as one would expect from the
Nernst-Einstein relation. We have not formulated a sim-
ple scaling argument to rationalize this correction to
leading scaling. No such corrections are found in the ex-
act results for the diffusion constant obtained by van
Leeuwen and Kooiman [8-11] by analytical solution of
the repton model with periodic boundary conditions. We
speculate that this correction to leading scaling arises due
to stress relaxation at the ends of the polymer, and that
the different treatment of the ends of the polymer causes
a different correction to leading scaling.

The diffusion constant may be related to the tube
correlation time 7=R2/D, where R =N!/? is the size of
the chain, giving a correlation time of the form
7<N3/(1+5N~%/3). The time 7 corresponds to the
“terminal time” for entanglement release in a polymer
melt, and is 7=~N?® in the reptation theory of polymer
melts. Experiments on polymer melts have long mea-
sured dIn7/d InN=3.4 [26]. It is amusing that the
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correction term in the repton model leads to
dInt/d InN=3 +(10/3)N ~%/3, which for N =50 gives
3.25. (Note that N in the repton model corresponds to
the molecular weight in units of the entanglement molec-
ular weight in a polymer melt.) Perhaps this type of
correction is partially responsible for the rather slow con-
vergence of observed scaling of the terminal time to N>
behavior.

We have shown that the basic repton model does not
show the E? drift-velocity dependence predicted by the
original version of the biased reptation model for
EN'2>1. As discussed by Duke, Semenov, and Viovy
[19,20] the E* drift-velocity dependence may still occur
for chains which are sufficiently stiff at the scale of the
network. An interesting question is what modification
could be made to the repton model to obtain this
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behavior. Chain stiffness and a suppression of “piling
up”’ of successive segments in the same pore could be in-
troduced into the model, but it is not clear if this would
be sufficient to change the universality class to that of
biased reptation.
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